Accelerated SSDs can help overcome the challenges commodity SSDs have in keeping up with the demands of the modern data center.
It’s no secret that SSDs (solid-state drives) provide some solid perks: Low latency, high IOPS (input/output operations per second), and high throughput. SSDs have accelerated the performance of many applications throughout the years, mainly when housed inside the server and closer to the CPU (central processing unit)—which has historically been starved of data to process due to slower storage technologies, spinning hard drives, or network latencies.
However, SSDs have struggled to keep up with the growth and evolution of the modern data center. Today’s data centers demand significantly higher performance, capacity, and endurance. Time and time, commodity SSDs have fallen tragically short in these critical areas.
Let’s examine why this is the case and what you can do about it.
1) Capacity
The fixed size of today’s storage devices creates problems adding complexity and cost to evolving workloads: as they grow or change, the only option is to add more drives. If additional drives won’t fit in the server, the next step is to add more servers, and if that’s not doable, you’re out of luck. Now, as workloads expand their reach towards the edge, they are accelerating data generation —especially sensor data—pushing storage infrastructure to its limit.
2) Performance
From a workload perspective, the goal is to push more data through more compute without adding nodes and the associated licensing and hardware costs. In server architectures today, the CPU is doing too much storage processing; as a result, application latency suffers because the CPU can’t keep up. […]